TELEFUNKEN Semiconductors

Phase Control Circuit - Tacho Applications

Description:

The integrated circuit U209B3, is designed as a phase control circuit in bipolar technology. It has also protection circuit for the supply. Due to integration of many functions, it leads to significant cost and space saving as
well as increased reliability. At the same time, it gives the designer free hand to select varieties of regulators to choose from and switching characteristics according to its choice.

Features

- Internal frequency to voltage converter
- Externally controlled integrated amplifier
- Automatic soft start with minimised "dead time"
- Voltage and current synchronisation
- Retriggering
- Triggering pulse typ. 155 mA
- Internal supply voltage monitoring
- Temperature compensated reference source
- Current requirement $\leq 3 \mathrm{~mA}$

Package: DIP14, SO16

Figure 1. Block diagram - SO 16 in bracket

Figure 2. Block diagram with typical circuitry for speed regulation

Description

Mains Supply

The U209B is designed with voltage limiting and can therefore be supplied directly from the mains. The supply voltage between Pin $2(+\mathrm{pol} / \perp)$ and Pin 3 builds up across D_{1} and R_{1} and is smoothed by C_{1}. The value of the series resistance can be approximated using (Figure 2):

$$
\mathrm{R}_{1}=\frac{\mathrm{V}_{\mathrm{M}}-\mathrm{Vs}}{2 \mathrm{I}_{\mathrm{S}}}
$$

Further information regarding the design of the mains supply can be found in the data sheets in the appendix. The reference voltage source on Pin 13 of typ. -8.9 V is derived from the supply voltage and represents the reference level of the control unit.

Operation using an externally stabilised DC voltage is not recommended.

If the supply cannot be taken directly from the mains because the power dissipation in R_{1} would be too large, then the circuit shown in the following Figure 3 should be employed.

Figure 3. Supply voltage for high current requirements

Phase Control

The function of the phase control is largely identical to that of the well known integrated circuit U211B. The phase angle of the trigger pulse is derived by comparing the ramp voltage, which is mains synchronised by the voltage detector, with the set value on the control input Pin 4. The slope of the ramp is determined by C_{2} and its charging current. The charging current can be varied using R_{2} on Pin 5. The maximum phase angle $\alpha_{\max }$ can also be adjusted using R_{2}.

When the potential on Pin 6 reaches the nominal value predetermined at Pin 11, then a trigger pulse is generated whose width t_{p} is determined by the value of C_{2} (the value of C_{2} and hence the pulse width can be evaluated by assuming $8 \mu \mathrm{~s} / \mathrm{nF}$.
The current sensor on Pin 1 ensures that, for operation with inductive loads, no pulse will be generated in a new half cycle as long as current from the previous half cycle is still flowing in the opposite direction to the supply voltage at that instant. This makes sure that "Gaps" in the load current are prevented.
The control signal on Pin 11 can be in the range 0 V to -7 V (reference point Pin 2).
If $\mathrm{V}_{11}=-7 \mathrm{~V}$ then the phase angle is at maximum $=\alpha_{\text {max }}$ i. e. the current flow angle is a minimum. The minimum phase angle $\alpha_{\text {min }}$ is when $V_{11}=V_{\text {pin2 }}$.

Voltage Monitoring

As the voltage is built up, uncontrolled output pulses are avoided by internal voltage surveillance. At the same time, all of the latches in the circuit (phase control, soft start) are reset and the soft-start capacitor is short circuited. Used with a switching hysteresis of 300 mV , this system guarantees defined start-up behaviour each time the supply voltage is switched on or after short interruptions of the mains supply.

Soft-Start

As soon as the supply voltage builds up (t_{1}), the integrated soft-start is initiated. The figure below shows the behaviour of the voltage across the soft-start capacitor and is identical with the voltage on the phase control input on Pin 11. This behaviour guarantees a gentle start-up for the motor and automatically ensures the optimum run-up time.
C_{3} is first charged up to the starting voltage V_{o} with typically $30 \mu \mathrm{~A}$ current (t_{2}). By then reducing the charging current to approx. $4 \mu \mathrm{~A}$, the slope of the charging function is substantially reduced so that the rotational speed of the motor only slowly increases. The charging current then increases as the voltage across C_{3} increases giving a progressively rising charging function which more and more strongly accelerates the motor with increasing rotational speed. The charging function determines the acceleration up to the set-point. The charging current can have a maximum value of $50 \mu \mathrm{~A}$.

Figure 4. Soft-start

Frequency to Voltage Converter

The internal frequency to voltage converter (f/V-converter) generates a DC signal on Pin 9 which is proportional to the rotational speed using an AC signal from a tacho-generator or a light beam whose frequency is in turn dependent on the rotational speed. The high impedance input with a switch-on threshold of typ. 100 mV gives very reliable operation even when relatively simple tacho-generators are employed. The tacho-frequency is given by:

$$
\mathrm{f}=\frac{\mathrm{n}}{60} \mathrm{p}[\mathrm{~Hz}]
$$

$\mathrm{n}=$ revolutions per minute
$p=$ number of pulses per revolution
The converter is based on the charge pumping principle. With each negative half wave of the input signal, a quantity of charge determined by C_{5} is internally amplified and then integrated by C_{6} at the converter output on Pin 9. The conversion constant is determined by C_{5}, its charging voltage of $\mathrm{V}_{\mathrm{ch}}, \mathrm{R}_{6}$ (Pin 9) and the internally adjusted charge amplification G_{i}.
$\mathrm{k}=\mathrm{G}_{\mathrm{i}} \cdot \mathrm{C}_{5} \cdot \mathrm{R}_{6} \cdot \mathrm{~V}_{\mathrm{ch}}$
The analog output voltage is given by

$$
\begin{array}{lll}
& \mathrm{V}_{\mathrm{o}} & =\mathrm{k} \cdot \mathrm{f} . \\
\text { whereas: } & \mathrm{V}_{\mathrm{ch}} & =6.7 \mathrm{~V} \\
& \mathrm{G}_{\mathrm{i}} & =8.3
\end{array}
$$

The values of C_{5} and C_{6} must be such that for the highest possible input frequency, the maximum output voltage does V_{0} does not exceed 6 V . While C_{5} is charging up the R_{i} on Pin 8 is approx. $6 \mathrm{k} \Omega$. To obtain good linearity of the f / V converter the time constant resulting from R_{i} and C_{5} should be considerably less $(1 / 5)$ than the time span of the negative half cycle for the highest possible input frequency. The amount of remaining ripple on the output voltage on Pin 9 is dependent on $\mathrm{C}_{5}, \mathrm{C}_{6}$ and the internal charge amplification.

$$
\Delta \mathrm{V}_{\mathrm{o}}=\frac{\mathrm{G}_{\mathrm{i}} \cdot \mathrm{~V}_{\mathrm{ch}} \cdot \mathrm{C}_{5}}{\mathrm{C}_{6}}
$$

The ripple $\Delta \mathrm{V}_{\mathrm{o}}$ can be reduced by using larger values of C_{6}, however, the maximum conversion speed will than also be reduced.

The value of this capacitor should be chosen to fit the particular control loop where it is going to be used.

Control Amplifier

The integrated control amplifier with differential input compares the set value (Pin 10) with the instantaneous value on Pin 9 and generates a regulating voltage on the output Pin 11 (together with external circuitry on Pin 12) which always tries to hold the real voltage at the value of the set voltages. The amplifier has a transmittance of typically $110 \mu \mathrm{~A} / \mathrm{V}$ and a bipolar current source output on Pin 11 which operates with typically $\pm 100 \mu \mathrm{~A}$. The amplification and frequency response are determined by $\mathrm{R}_{7}, \mathrm{C}_{7}, \mathrm{C}_{8}$ and R_{8} (can be left out). For operation as a power divider, $\mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{R}_{6}, \mathrm{C}_{6}, \mathrm{R}_{7}, \mathrm{C}_{7}, \mathrm{C}_{8}$ and R_{8} can be left out. Pin 9 should be connected with Pin 11 and Pin 7 with Pin 2. The phase angle of the triggering pulse can be adjusted using the voltage on Pin 10. An internal limiting circuit prevents the voltage on Pin 11 from becoming more negative than $\mathrm{V}_{\mathbf{1 3}}+1 \mathrm{~V}$.

Pulse Output Stage

The pulse output stage is short circuit protected and can typically deliver currents of 125 mA . For the design of smaller triggering currents, the function $I_{G T}=f\left(R_{G T}\right)$ has been given in the data sheets in the appendix.

Automatic Retriggering

The automatic retriggering prevents half cycles without current flow, even if the triacs is turned off earlier e.g. due to not exactly centred collector (brush lifter) or in the event of unsuccessful triggering. If it is necessary, another triggering pulse is generated after a time lapse of $t_{P P}=4.5 t_{\mathrm{P}}$ and this is repeated until either the triac fires or the half cycle finishes.

General Hints and Explanation of Terms

To ensure safe and trouble-free operation, the following points should be taken into consideration when circuits are being constructed or in the design of printed circuit boards.

- The connecting lines from C_{2} to Pin 6 and Pin 2 should be as short as possible, and the connection to Pin 2 should not carry any additional high current such as the load current. When selecting C_{2}, a low temperature coefficient is desirable.
- The common (earth) connections of the set-point generator, the tacho-generator and the final interference suppression capacitor C_{4} of the f / V converter should not carry load current.
- The tacho generator should be mounted without influence by strong stray fields from the motor.

Figure 5. Explanation of terms in phase relationship

Absolute Maximum Ratings

Reference point Pin 2, unless otherwise specified

Parameters	Symbol	Value	Unit
Current requirement $\mathrm{t} \leq 10 \mu \mathrm{~s}$$\quad$ Pin 3	$-\mathrm{I}_{\mathrm{S}}$	$\begin{gathered} 30 \\ 100 \end{gathered}$	mA
Synchronisation current Pin 1 Pin 14 $t<10 \mu \mathrm{~s}$ Pin 1 $\mathrm{t}<10 \mu \mathrm{~s}$ Pin 14	$\mathrm{I}_{\text {syncI }}$ $\mathrm{I}_{\text {syncV }}$ $\pm \mathrm{i}_{\mathrm{i}}$ $\pm \mathrm{i}_{\mathrm{v}}$	$\begin{gathered} 5 \\ 5 \\ 35 \\ 35 \end{gathered}$	mA
f/V converter: Input current $\mathrm{t}<10 \mathrm{us} 7$	$\begin{aligned} & \mathrm{I}_{\mathrm{eff}} \\ & \pm_{\mathrm{i}} \end{aligned}$	$\begin{gathered} 3 \\ 13 \end{gathered}$	mA
Phase control: Input voltage Input current\quad Pin 11	$\begin{gathered} -\mathrm{V}_{\mathrm{I}} \\ \pm \mathrm{I}_{\mathrm{I}} \end{gathered}$	$\begin{gathered} 0 \text { to } 7 \\ 500 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mu \mathrm{~A} \end{gathered}$
Soft-start: Input voltage Pin 12 Puse	- $\mathrm{V}_{\text {I }}$	$\left\|\mathrm{V}_{13}\right\|$ to 0	V
Pulse output: Reverse voltage Pin 4	V_{R}	V_{S} to 5	V
Amplifier			
Input voltage Pin 10	- $\mathrm{V}_{\text {I }}$	$\left\|\mathrm{V}_{S}\right\|$	
Pin 8 open Pin 9	- $\mathrm{V}_{\text {I }}$	$\left\|\mathrm{V}_{13}\right\|$ to 0	V
Reference voltage source			
Output current Pin 13	I_{0}	7.5	mA
Power dissipation $\mathrm{T}_{\mathrm{amb}}=45^{\circ} \mathrm{C}$ $\mathrm{T}_{\mathrm{amb}}=80^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {tot }}$	$\begin{aligned} & 570 \\ & 320 \\ & \hline \end{aligned}$	mW
Storage temperature range	$\mathrm{T}_{\text {stg }}$	-40 to +125	${ }^{\circ} \mathrm{C}$
Junction temperature	T_{i}	125	
Ambient temperature range	$\mathrm{T}_{\mathrm{amb}}$	-10 to +100	

TELEFUNKEN Semiconductors
U209B3/ U209B3-FP

Thermal Resistance

	Parameters	Symbol	Maximum	Unit
Junction ambient	DIP 14	$\mathrm{R}_{\text {thJA }}$	140	K/W
	SO 16: on p.c. board		180	
	SO 16: on ceramic substrate		100	

Electrical Characteristics

$-\mathrm{V}_{\mathrm{S}}=13.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, reference point Pin 2, unless otherwise specified

Parameters	Test Conditions / Pin	Symbol	Min	Typ	Max	Unit
Supply voltage for mains operations	Pin 3	-V	13.0		$\mathrm{V}_{\text {Limit }}$	V
Supply voltage limitation	$\begin{array}{ll} \hline-\mathrm{I}_{\mathrm{S}}=3 \mathrm{~mA} & \operatorname{Pin} 3 \\ -\mathrm{I}_{\mathrm{S}}=30 \mathrm{~mA} & \end{array}$	$-\mathrm{V}_{\mathrm{S}}$	$\begin{aligned} & 14.6 \\ & 14.7 \end{aligned}$		$\begin{aligned} & 16.6 \\ & 16.8 \end{aligned}$	V
DC supply current	$-\mathrm{V}_{\mathrm{S}}=13.0 \mathrm{~V} \quad$ Pin 3	$\mathrm{-IS}_{\text {S }}$	1.1	2.5	3.0	mA
Reference voltage source	$\begin{array}{ll} \hline \mathrm{I}_{\mathrm{L}}=10 \mu \mathrm{~A} & \text { Pin } 13 \\ -\mathrm{I}_{\mathrm{L}}=5 \mathrm{~mA} & \\ \hline \end{array}$	$\mathrm{V}_{\text {Ref }}$	$\begin{aligned} & 8.6 \\ & 8.3 \end{aligned}$	8.9	$\begin{aligned} & 9.2 \\ & 9.1 \end{aligned}$	V
Temperature coefficient	Pin 13	TC VRef			0.5	mV/K
Voltage monitoring Pin 3						
Turn-on threshold		$-\mathrm{V}_{\text {TON }}$		11.2	13	V
Turn-off threshold		$-\mathrm{V}_{\text {TOFF }}$	9.9	10.9		V
Phase control currents						
Current synchronisation	Pin 1	$\pm \mathrm{I}_{\text {syncl }}$	0.35		2.0	mA
Voltage synchronisation	Pin 14	$\pm \mathrm{I}_{\text {sync }}$	0.35		2.0	mA
Voltage limitation	$\pm \mathrm{I}_{\mathrm{L}}=5 \mathrm{~mA} \quad$ Pin 1, 14	$\pm \mathrm{V}_{1}$	1.4	1.6	1.8	V
Reference ramp, Figure 6						
Charge current	$\begin{aligned} & \mathrm{I}_{6}=\mathrm{f}\left(\mathrm{R}_{5}\right), \\ & \mathrm{R}_{5}=1 \mathrm{~K} \ldots 820 \mathrm{k} \Omega \text { Pin } 6 \\ & \hline \end{aligned}$	I_{6}	1		20	$\mu \mathrm{A}$
$\mathrm{R} \varphi$ - reference voltage	$\alpha \geq=180^{\circ} \quad$ Pin 5,3	V_{φ} Ref	1.06	1.13	1.18	V
Temperature coefficient	Pin 5	TC_{φ} Ref		0.5		mV / K
Output pulse						
Output pulse current	$\mathrm{R}_{\mathrm{V}}=0, \mathrm{~V}_{\mathrm{GT}}=1.2 \mathrm{~V}$ Pin 4	I_{O}	100	155	190	mA
Reverse current	Pin 4	I_{OR}		0.01	3.0	$\mu \mathrm{A}$
Output pulse width	Pin 5,2	t_{p}		8		$\mu \mathrm{s} / \mathrm{nF}$
Automatic retriggering						
Repetition rate	Pin 4	$\mathrm{t}_{\mathrm{pp}} / \mathrm{t}_{\mathrm{p}}$	3	4.5	6	
Amplifier						
Common mode voltage range	Pin 9, 10	$\mathrm{V}_{\text {ICR }}$	($\left.\mathrm{V}_{13}-1 \mathrm{~V}\right)$		$\left(\mathrm{V}_{2}-1 \mathrm{~V}\right)$	V
Input bias current	Pin 10	$\mathrm{I}_{\text {IB }}$		0.01	1	mA
Input offset voltage	Pin 9, 10	V_{IO}		10		mV
Output current	Pin 11 Pin 11	$\begin{aligned} & -\mathrm{I}_{\mathrm{O}} \\ & +\mathrm{I}_{\mathrm{O}} \\ & \hline \end{aligned}$	$\begin{aligned} & 75 \\ & 88 \end{aligned}$	$\begin{aligned} & 110 \\ & 120 \end{aligned}$	$\begin{aligned} & 145 \\ & 165 \end{aligned}$	$\mu \mathrm{A}$
Short circuit forward transmittance	$\mathrm{I}_{11}=\mathrm{f}\left(\mathrm{V}_{9 / 10}\right) \quad$ Pin 11	Y_{f}		1000		$\mu \mathrm{A} / \mathrm{V}$

U209B3/U209B3-FP

TELEFUNKEN Semiconductors

Parameters	Test Conditions / Pin	Symbol	Min	Typ	Max	Unit
Frequency to voltage converter						
Input bias current	Pin 7	$\mathrm{I}_{\text {IB }}$		0.6	2	$\mu \mathrm{A}$
Input voltage limitation	$\pm \mathrm{I}_{\mathrm{I}}=1 \mathrm{~mA} \quad \begin{aligned} & \text { Pin } 7 \\ & \\ & \\ & \text { Pin } 7\end{aligned}$	$\begin{aligned} & +\mathrm{V}_{\mathrm{I}} \\ & -\mathrm{V}_{\mathrm{I}} \\ & \hline \end{aligned}$	$\begin{aligned} & 660 \\ & 7.25 \end{aligned}$		$\begin{aligned} & 750 \\ & 8.05 \end{aligned}$	$\begin{gathered} \mathrm{mV} \\ \mathrm{~V} \end{gathered}$
Turn-on threshold	Pin 7	$-\mathrm{V}_{\text {TON }}$		100	150	mV
Turn-off threshold	Pin 7	- $\mathrm{V}_{\text {TOFF }}$	20	50		mV
Discharge current	Figure $2 \quad$ Pin 8	$\mathrm{I}_{\text {dis }}$		0.5		mA
Charge transfer voltage	Pin 8	V_{ch}	6.50	6.70	6.90	V
Charge transfer gain $\mathrm{I}_{9} / \mathrm{I}_{8}$	Pin 8/9	G_{i}	7.5	8.3	9.0	
Conversion factor	$\mathrm{C}_{8}=1 \mathrm{nF}, \mathrm{R}_{9}=100 \mathrm{k} \Omega$	k		5.5		$\mathrm{mV} / \mathrm{Hz}$
Operating range f/V output	Ref. point Pin 13 Pin 9	V_{O}		0-6		V
Linearity				± 1		\%
Soft start \quad Figures 7 to $11 \quad$ Pin 12						
f / v-converter non active						
Starting current	$\mathrm{V}_{12}=\mathrm{V}_{13}, \mathrm{~V}_{7}=\mathrm{V}_{2}$	I_{0}	20	30	50	$\mu \mathrm{A}$
Final current	$\mathrm{V}_{12}=-0.5 \mathrm{~V}$	I_{0}	50	85	130	$\mu \mathrm{A}$
f/v-converter active						
Starting current	$\mathrm{V}_{12}=\mathrm{V}_{13}$	I_{0}	2	4	6	$\mu \mathrm{A}$
Final current	$\mathrm{V}_{12}=-0.5 \mathrm{~V}$	I_{0}	30	55	80	$\mu \mathrm{A}$
Discharge current	Restart pulse	$-\mathrm{I}_{\mathrm{O}}$	0.5	3	10	mA

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

Figure 15.

Figure 16.

Figure 17.

Applications

Figure 18. Phase control (power control) for electric tools

U209B3/U209B3-FP

Figure 19. Temperature controlled fan motor $\left(220 \mathrm{~V}_{\mathrm{ac}}\right)$

Figure 20. Temperature controlled fan motor (110 V_{ac})

U209B3/U209B3-FP

Design Calculations for Mains Supply

The following equations can be used for the evaluation of the series resistor R_{1} for worst case conditions:

$$
\begin{array}{lll}
\mathrm{R}_{1 \max }=0.85 \frac{\mathrm{~V}_{\mathrm{M} \min }-\mathrm{V}_{\text {Smax }}}{2 \mathrm{I}_{\text {tot }}} & \mathrm{R}_{1 \min }=0.85 & \frac{\mathrm{~V}_{\mathrm{M}}-\mathrm{V}_{\mathrm{Smin}}}{2 \mathrm{I}_{\mathrm{Smax}}} \\
\left.\mathrm{P}_{(\mathrm{R} 1 \max }\right)=\frac{\left(\mathrm{V}_{\mathrm{M} \max }-\mathrm{V}_{\text {Smin }}\right)^{2}}{2 \mathrm{R}_{1}} &
\end{array}
$$

where:

V_{M}	$=$ Mains voltage 220 V
$\mathrm{~V}_{\mathrm{S}}$	$=$ Supply voltage on Pin 4
$\mathrm{I}_{\mathrm{tot}}$	$=$ Total DC current requirement of the circuit
	$=\mathrm{I}_{\mathrm{S}}+\mathrm{I}_{\mathrm{p}}+\mathrm{I}_{\mathrm{X}}$

Dimensions in mm

Ozone Depleting Substances Policy Statement

It is the policy of TEMIC TELEFUNKEN microelectronic GmbH to

1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

TEMIC TELEFUNKEN microelectronic GmbH semiconductor division has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

TEMIC can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

